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Figure 1: CSTR with PFR recycle.

Consider a CSTR of volume V with a recycle through a PFR of length L and cross-
sectional area A at a superficial velocity v, see figure 1. Two models of such a system
are proposed:

1. Delay differential equation model

2. Partial differential equation model

The goal is to compare the PDE model with the analytical solution of the corresponding
DDE model to illustrate the effect of numerical diffusion when solving the PDE model
numerically. The model experiment is a tracer experiment in which a pulse of substance
cδ V is introduced into the tank momentarily and then the concentration response is
observed.

DDE Model

A DDE model of the system is stated in equation (1).

dc(t)
dt = v A

V

[
c(t− L

v
)− c(t)

]
, for t ≥ 0, c(t < 0) = 0 and c(t = 0) = cδ (1)

v A

V
is observed to be the dilution rate of the CSTR, L

v
the residence time in the PFR

and cδ is the pulse concentration. Eventually the pulse will be evenly distributed in the
entire volume resulting in a final concentration c∞ according to equation (2).

c∞ = cδ V

LA+ V
(2)

Equation (1) may be brought to a dimensionless form as stated in equation (3) by intro-
ducing the dimensionless variables θ = L

v
t and x = c− c∞

cδ − c∞
as well as the dimensionless
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constant φ = LA

V
which is the ratio of the PFR volume to the CSTR volume.

dx(θ)
dθ = φ [x(θ − 1)− x(θ)] , for θ ≥ 0, x(θ < 0) = −φ−1 and x(θ = 0) = 1 (3)

This delay differential equation with constant delay may be solved analytically by the
method of steps.

Equation (2) may be expressed as equation (4) using the dimensionless constant φ.

c∞ = cδ
1

φ+ 1 (4)

In dimensionless terms c∞ corresponds to x = 0.

PDE Model

A PDE model of the system is stated in equations (5a) and (5b).

dc
dt = v A

V
[cPFR(z = L)− c] (5a)

∂cPFR
∂t

= −∂N
∂z

, N = v cPFR (5b)

Equations (5a) and (5b) have the associated initial conditions c(t < 0) = 0, cPFR(t <
0, z) = 0 for z ∈ [0, L] and boundary conditions N(t, z = 0) = v c, ∂cPFR(t,z=L)

∂z = 0. This
model may be brought to a dimensionless form using the same dimensionless variables
as for the DDE model along with λ = z

L
yielding equations (6a) and (6b).

dx
dθ = φ [xPFR(λ = 1)− x] (6a)

∂xPFR
∂θ

= −∂Π
∂λ

, Π = xPFR (6b)

The corresponding dimensionless initial conditions are x(θ < 0) = −φ−1, xPFR(θ <
0, λ) = −φ−1 for λ ∈ [0, 1] and boundary conditions Π(θ, λ = 0) = x, ∂xPFR(θ,λ=1)

∂λ = 0.
The dimensionless model may be discretized according to the method of lines using a
central difference scheme yielding equations (7a) and (7b).

dx
dθ = φ [xPFR, n − x] (7a)

∂xPFR, i

∂θ
= −

Πi+ 1
2
−Πi− 1

2

∆λ , Π 1
2

= x, Πi+ 1
2

= xPFR, i, i ∈ 1, . . . , n (7b)

where ∆λ = n−1. The discretized PFR model is equivalent to a finite series of CSTRs.
This analogy explains the numerical diffusion which is observed for numerical simulation
of the distributed PFR model.

Simulation

Both models are implemented in MATLAB® R2017a, see appendix A.

A simulation of a tracer experiment is presented in figure 2 for different combinations of
φ and n. The numerical simulation approaches the analytical solution for increasing n
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as the degree of numerical diffusion diminishes. Increasing φ, corresponding to a large
PFR volume relative to CSTR volume, increases the amount of oscillations before the
final steady state concentration of tracer is reached because the relatively large PFR
volume hinders mixing in the CSTR. Increasing n appears to improve the agreement
between the analytical and the numerical solution.

Figure 2: Tracer experiment simulated for n = {10, 50, 100, 200} and φ = {0.5, 5.0}.

3



A tracer.m
1 set(0,'defaultlinelinewidth',1.7,'DefaultAxesFontSize',14,'DefaultAxesXGrid','on','DefaultAxesYGrid','

on','defaultTextInterpreter','latex', 'DefaultFigurePosition', [0 0 600 900])
2 set(groot,'defaultAxesTickLabelInterpreter','latex','defaultLegendInterpreter','latex');
3
4 n_tau = 4;
5 t = linspace(0,n_tau,1000);
6 n_discrete = [10 50 100 200];
7 phi = [0.5 5];
8
9 %% Plot

10 figure(1);
11 for j = 1:2
12 % Parameters
13 P.phi = phi(j);
14 P.x_delta = 1;
15 x_infty = P.x_delta * 1/(P.phi+1);
16 % Compute
17 state_analytical = tracer_analytical(t,P,n_tau);
18 for i = 1:4
19 subplot(4,2,1+2*(i−1)+j−1);
20 P.n = n_discrete(i);
21 state = ones(1,P.n+1)*(−1/P.phi);
22 state(P.n+1) = P.x_delta;
23 [~,state_ode] = ode15s(@dispersion_model,t,state(:),[],P);
24
25 plot(t,state_ode(:,end)) % Finite difference
26 hold on
27 plot(t,state_analytical,'−−') % Analytical
28 ylim([(exp(−P.phi)*(P.phi*P.x_delta+1)−1)/P.phi P.x_delta]); xlim([0 n_tau])
29 legend({sprintf('Numerical, $n=%d$', P.n),'Analytical'})
30 ylabel('$x$')
31 if i == 1
32 title(sprintf('$\\phi=%0.1f$',P.phi))
33 end
34 end
35 xlabel('$\theta$')
36 end
37 %% Analytical solution
38 function y = tracer_analytical(t,P,n_tau)
39 % Method of steps to solve DDE analytically
40 % See http://www.orcca.on.ca/TechReports/TechReports/2005/TR−05−02.pdf
41 % for a brief introduction to the subject.
42 syms x(l) u(l) phi_ x0_

43 x0 = x0_;
44 u(l) = −1/phi_;
45
46 y = nan(size(t));
47 for i = 1:n_tau
48 % Solve
49 u(l) = dsolve(diff(x,l)==phi_*(u(l)−x(l)),x(0)==x0);
50 fun = matlabFunction(u(l));
51 x0 = u(1); % Initial condition for next step
52 % Compute
53 indices = t>=(i−1)&t<=i;
54 v = t(indices)−(i−1);
55 y(indices) = fun(v,P.phi,P.x_delta);
56 end
57 end
58 %% System of ODEs
59 function dx = dispersion_model(~,x,P)
60 x_pfr = x(1:end−1); % Unpack
61 dx_cstr = P.phi*(x_pfr(end)−x(end)); % CSTR
62 dx_pfr = −diff([x(end); x_pfr])*P.n; % PFR
63 dx = [dx_pfr; dx_cstr]; % Pack
64 end
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