
Maintained Zones in CSTR with Recycle

Eskild Schroll-Fleischer

September 27, 2020

  

CSTR

uy

v

z

p

q

Figure 1: CSTR with PFR recycle. Two measurements y and v
and two manipulated variables u and z.

Consider a CSTR of volume V with a recycle through a PFR of length L and cross-
sectional area A at constant superficial velocity v, see figure 1. Measurement points
are placed inside the CSTR and at the beginning of the PFR. Inlets are placed in
the CSTR and just before the measurement point in the PFR. The objective is to
simultaneously maintain one measurement value y in the CSTR by manipulating u and
another measurement value v in the PFR by manipulating z. The measurement could
for example be a concentration of a component or a temperature.

Point v is placed at axial position pL relative to the outlet to the PFR and corre-
spondingly z is placed at axial position q L. In this terminology 0 < p < q < 1. The
residence time in the CSTR is τc = V (v A)−1 and the residence time in the PFR is
τp = Lv−1.

The sensor in the PFR behaves as a first order system even though plug flow conditions
prevail in the PFR. The time constant of this first order behaviour is τs.

DDE Model

The system is modeled by equations (1) to (4) where one unit of time t corresponds to
one residence time τp in the PFR.

dx1(t)
dt = τ−1

c (u(t) + x2(t− p) − x1(t)) , for t > 0, x1(t ≤ 0) = 0 (1)

dx2(t)
dt = τ−1

s (z(t− (q − p)) + x1(t− (1 − p)) − x2(t)) , for t > 0, x2(t ≤ 0) = 0 (2)

1



The measurements are then y = x1 and v = x2. Both u and z are PI-controllers:

u(t) = Kp, u

(
−x1(t) + τ−1

I, uIu

)
,

dIu(t)
dt = −x1(t), for t > 0, Iu(t ≤ 0) = 0 (3)

z(t) = Kp, z

(
(xPFR − x2(t)) + τ−1

I, zIz

)
,

dIz(t)
dt = xPFR − x2(t), for t > 0, Iz(t ≤ 0) = 0

(4)

It is desired to move the time dependence of z from equation (2) to equation (4) to
ease implementation of the model in MATLAB® R2018a. This is accomplished as fol-
lows:

dx2(t)
dt = τ−1

s (z(t) + x1(t− (1 − p)) − x2(t)) , for t > 0, x2(t ≤ 0) = 0 (5)

z(t) = Kp, z

(
(xPFR − x2(t− (q − p))) + τ−1

I, zIz

)
,

dIz(t)
dt = xPFR − x2(t− (q − p))

(6)

The points in history which are required are then: t−p, t− (q−p) and t− (1−p).

Controller tuning

The PI-controllers are tuned according to the Skogestad SIMC rules which dictate that
for a unit gain process with time constant τ and time delay θ:

Kp = τ

θ + τc
and τI = min (τ, 4(θ + τc)) for τc = τ

5 + θ (7)

The time constant in the CSTR is τc and for the PFR τs. There is a time delay in the
PFR and this amounts to (q − p) which is the temporal distance between manipulation
and measurement.

Simulation

The DDE model in equations (1), (3), (5) and (6) is implemented in MATLAB® R2018a,
see appendix A.

A simulation of a closed loop experiment is presented in figure 2. The simulation shows
that the two zones are maintained.

2



Figure 2: Simulation for τc = 0.2, τs = 0.02, q = 0.9, p = 0.8 and
initial history x1(t ≤ 0) = x2(t ≤ 0) = 0.

3



A maintained_zones.m
1 set(0,'defaultlinelinewidth',1.7,'DefaultAxesFontSize',14,'DefaultAxesXGrid','on','DefaultAxesYGrid','

on','defaultTextInterpreter','latex', 'DefaultFigurePosition', [0 0 600 500])
2 set(groot,'defaultAxesTickLabelInterpreter','latex','defaultLegendInterpreter','latex');
3 clear;clc;close all;
4 %% Parameters
5 P.tau_cstr = 0.2; % [theta], time constant of CSTR
6 P.tau_pfr = 0.02; % [theta], time constant of sensor in PFR
7 P.p = 0.8; % Distance from end of PFR to measured variable
8 P.q = 0.9; % Distance from end of PFR to manipulated variable
9 tau_c_cstr = P.tau_cstr/5;

10 P.Kpu = P.tau_cstr/tau_c_cstr; % CSTR controller gain
11 P.tauIu = min(P.tau_cstr,4*tau_c_cstr); % [theta], CSTR controller integral time
12 tau_c_pfr = P.tau_pfr/5+(P.q−P.p);
13 P.Kpz = P.tau_pfr/((P.q−P.p)+tau_c_pfr); % PFR controller gain
14 P.tauIz = min(P.tau_pfr,4*((P.q−P.p)+tau_c_pfr)); % [theta], PFR controller integral time
15 n_theta = 3; % Simulation duration [theta]
16 %% Solve DDE model
17 sol = dde23(@model_dde,[P.p, (1−P.p), (P.q−P.p)],@model_dde_history,[0, n_theta],[],P);
18 % Extract solution
19 theta = linspace(0,n_theta,1000);
20 y = deval(sol, theta);
21 x1 = y(1,:);
22 x2 = y(2,:);
23 %% Plot of solutions side by side
24 figure
25 plot(theta,x1)
26 hold on
27 plot(theta,x2)
28 ylabel('$x$')
29 xlabel('$\theta$')
30 legend('CSTR, $x_1$', 'PFR, $x_2$')
31 %print('plot','−dpdf')
32 %% DDE history function
33 function [x] = model_dde_history(t,P)
34 x = zeros(4,1);
35 end
36 %% DDE model function
37 function [dx] = model_dde(t,x,xh,P)
38 % Pick relevant states
39 x1 = x(1);
40 x2 = x(2);
41 Iu = x(3);
42 Iz = x(4);
43 x2ptheta = xh(2,1); % x2(t−p)
44 x11ptheta = xh(1,2); % x1(t−(1−p))
45 x2qptheta = xh(2,3); % x2(t−(q−p))
46 % Integral states are calculated:
47 dIudt = −x1;
48 if t > (P.q−P.p)
49 dIzdt = 1−x2qptheta;
50 else
51 dIzdt = 0;
52 end
53 % Control action
54 u = P.Kpu*(dIudt + Iu/P.tauIu);
55 z = P.Kpz*(dIzdt + Iz/P.tauIz);
56 % DDEs
57 dx1dt = (u+x2ptheta−x1)/P.tau_cstr;
58 dx2dt = (z+x11ptheta−x2)/P.tau_pfr;
59
60 dx = [dx1dt; dx2dt; dIudt; dIzdt];
61 end

a


	maintained_zones.m

